Lecture 21: Conditional Distributions

 ${\tt STAT205}\ \textit{Lecturer: Jim\ Pitman\ Scribe: Richard\ Crump\,{\tt <crump@econ.berkeley.edu}} \\$

21.1 Related Ideas

- 1. Regular conditional distribution for Y given X (or a sigma field $\sigma(X)$).
- 2. Markov kernel (transition function/operator).

21.1.1 Setup, Definitions and Terminology

Two measurable spaces: (S, \mathcal{S}) and (T, \mathcal{T}) (very often we have S = T and $\mathcal{S} = \mathcal{T}$).

Definition 21.1 A Markov kernel P(s, A) from (S, S) to (T, T) is a collection of probability measures on (T, T) indexed in an S-measurable way by a parameter $s \in S$, satisfying:

- i. for each $s \in S$, $P(s, \cdot)$ is a probability measure on (T, \mathcal{T}) ; and
- ii. for each $A \in \mathcal{T}$, $s \mapsto P(s, A)$ is measurable relative to \mathcal{S} .

Example 21.2 From the theoretical statistics literature: \mathbb{P}_{θ} $\theta \in \Theta$. Where \mathbb{P}_{θ} are defined on the measurable space (X, \mathcal{X}) .

We now introduce the idea of a regular conditional distribution.

Definition 21.3 For a pair of random variables (X,Y), $X: \Omega \mapsto S$ and $Y: \Omega \mapsto T$, defined on a background space $(\Omega, \mathcal{F}, \mathbb{P})$, we say that a Markov kernel serves as a regular conditional distribution for Y given X if and only if the joint distribution of (X,Y) is given by the formula

$$\mathbb{P}(X \in dx, Y \in dy) = \mathbb{P}(X \in dx) \cdot P(x, dy).$$

This means (by definition!) that

$$\mathbb{P}(X \in A, Y \in B) = \int_{A} \mathbb{P}(X \in dx) \cdot P(x, B)$$

$$= \int_{S} \mathbf{1}_{(x \in A)} \cdot \mathbb{P}(X \in dx) \cdot P(x, B)$$

$$= \mathbb{E} \left[\mathbf{1}_{(X \in A)} \cdot P(X, B) \right].$$
(21.1)

Take $g(\cdot) \geq 0$ and product measurable: then,

$$\mathbb{E}\left[g(X,Y)\right] = \int_{S} \mathbb{P}(X \in dx) \left[\int_{T} P(x,dy)g(x,y)\right]$$

$$= \int_{S} \left[\int_{T} g(x,y) \cdot P(x,dy)\right] \mathbb{P}(X \in dx).$$
(21.2)

Theorem 21.4 (Generalized Fubini's Theorem) (21.1) holds for all $A \in \mathcal{S}$, $B \in \mathcal{T}$ if and only if (21.2) holds for all $g \geq 0$ product measurable (and hence for signed g, provided result is finite with $g \mapsto |g|$).

21.1.2 Examples

Example 21.5 If X, Y have density f(x,y) relative to dx, dy for some reference measures dx on (S, S) and dy on (T, T), then

$$P(x, dy) = \frac{f(x, y)}{f_X(x)} dy$$

In this case it is easy to flip and get a conditional distribution of X given Y, that is

$$\hat{P}(y, dx) = \frac{f(x, y)}{f_Y(y)} dx$$

by Bayes' Rule. But in a general setting (setting of Generalized Fubini's Theorem cannot do this), there is no Bayes' formula without reference measures. But, there is a general theory which says that provided (S, \mathcal{S}) is a nice, measurable space ([1], chapter 4, (1.6)) then there does exist a Markov kernel $\hat{P}(y, dx)$ so that

$$\mathbb{P}(X \in dx, Y \in dy) = \mathbb{P}(Y \in dy) \cdot \hat{P}(y, dx)$$

in the same sense as before.

Example 21.6 A point (X,Y) is picked proportional to length measure on the perimeter of an equilateral triangle with vertices (0,0), (1,0) and $(\frac{1}{2},\frac{\sqrt{3}}{2})$. Note that (X,Y) is easily defined on $(\Omega, \mathcal{F}, \mathbb{P}) = ([0,1], \mathcal{B}, \lambda)$.

Observe that $X \sim \mathcal{U}[0,1]$ and $Y \sim \frac{1}{3} \cdot \delta_0 + \frac{2}{3} \cdot \mathcal{U}[0,\frac{\sqrt{3}}{2}]$ by inspection. What is the conditional distribution of Y given X = x?

Note first that for $0 \le x \le \frac{1}{2}$ the only possible values of Y consistent with X = x are y = 0 or $y = \sqrt{3}x$. Thus

$$\mathbb{P}(Y > 0 | 0 \le x \le \frac{1}{2}) = \frac{\mathbb{P}(Y > 0, 0 \le x \le \frac{1}{2})}{\mathbb{P}(0 \le x \le \frac{1}{2})} = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{6}} = \frac{2}{3}$$

More generally, choose $\varepsilon > 0$ and $0 < x < 1 - \varepsilon$. Then,

$$\mathbb{P}(Y > 0 | x < X < x + \varepsilon) = \frac{\mathbb{P}(Y > 0, x < X < x + \varepsilon)}{\mathbb{P}(x < X < x + \varepsilon)} = \frac{\frac{2}{3}\varepsilon}{\varepsilon} = \frac{2}{3}$$

and

$$\mathbb{P}(Y = 0 | x < X < x + \varepsilon) = \frac{1}{3}$$

So for X = x where $0 \le x \le \frac{1}{2}$ the conditional distribution is

$$(Y|X=x) = \begin{cases} 0 & \text{with probability } \frac{1}{3} \\ \sqrt{3}x & \text{with probability } \frac{2}{3} \end{cases}$$

A similar argument follows for $\frac{1}{2} \le x \le 1$ with a different line.

Proof: You may check the details. Just check $\mathbb{P}(X \in A, Y \in B)$ is given by integration of this regular conditional distribution. Compute the lengths of intervals.

Question: How does this relate to conditional expectation?

Answer: Suppose $P(x,\cdot)$ gives a regular conditional distribution for Y given X=x as defined before, i.e., $\mathbb{P}(X \in x, Y \in dy) = \mathbb{P}(X \in x) \cdot P(x, dy)$ then we can compute

$$\mathbb{E}[h(Y)|X=x] = \int_{S} P(x, dy) \cdot h(y) \equiv \psi(x)$$

so that

$$\mathbb{E}[h(Y)|X] = \psi(X)$$

and

$$\mathbb{E}[h(Y)] = \mathbb{E}[\psi(X)]$$

References

[1] Richard Durrett. Probability: theory and examples, 3rd edition. Thomson Brooks/Cole, 2005.